INVESTIGATION INTO THE REDUCTION OF FOXING STAINS IN PAPER

Madison Brockman and Emily Farek

Advisors: Richard Wolbers and Joan Irving Winterthur/University of Delaware Program in Art Conservation

ANAGPIC 2018, Queen's University

THE OBJECTS

BT Recto, normal illumination

Description

- Le Ballon (left) and Le Pigeon (right)
- Chine collé lithographs on wove paper
- 23.5 x 16.3 inches

Provenance

- 1870 1871
- Lithographs by Émile Vernier
- After paintings by Pierre Puvis de Chavannes
- Published by Lemercier & Cie, Paris

BT Recto, normal illumination

Description

- *Le Ballon* (left) and *Le Pigeon* (right)
- Chine collé lithographs on wove paper
- 23.5 x 16.3 inches

Provenance

- 1870 1871
- Lithographs by Émile Vernier
- After paintings by Pierre Puvis de Chavannes
- Published by Lemercier & Cie, Paris

BT Recto, normal illumination

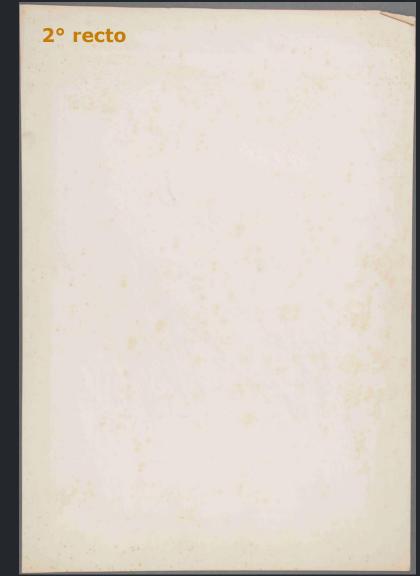
S.O.S.!

Pervasive foxing

• Risk of delamination

Description

- Le Ballon (left) and Le Pigeon (right)
- Chine collé lithographs on wove paper
- 23.5 x 16.3 inches

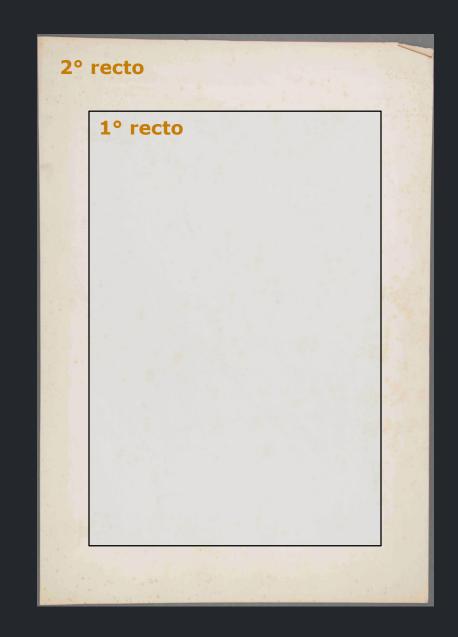

Provenance

- 1870 1871
- Lithographs by Émile Vernier
- After paintings by Pierre Puvis de Chavannes
- Published by Lemercier & Cie, Paris

Technique:

• Damp 2° support

Technique:


- Damp 2° support
- Pasted verso of 1° support

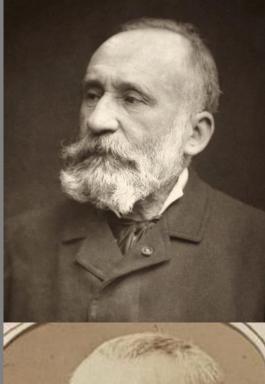
2° recto

Technique:

- Damp 2° support
- Pasted verso of 1° support
- 1° support placed on 2°

Technique:

- Damp 2° support
- Pasted verso of 1° support
- 1° support placed on 2°
- Plate printed on 1° as objects are pressed together



Technique:

- Damp 2° support
- Pasted verso of 1° support
- 1° support placed on 2°
- Plate printed on 1° as objects are pressed together

Risk of delamination in aqueous treatment due to water-soluble adhesive

THE ARTISTS

Images courtesy L'Histoire Pa L'Image

THE SETTING

Franco-Prussian War

- 19 July 1870 10 May 1871
- Paris under siege
- Messages carried by balloons and pigeons
- Images to uplift Parisian people
- Immediately reproduced for distribution

Images courtesy L'Histoire Pa L'Image

BT Recto, normal illumination

LE BALLON

BT Recto, UV illumination

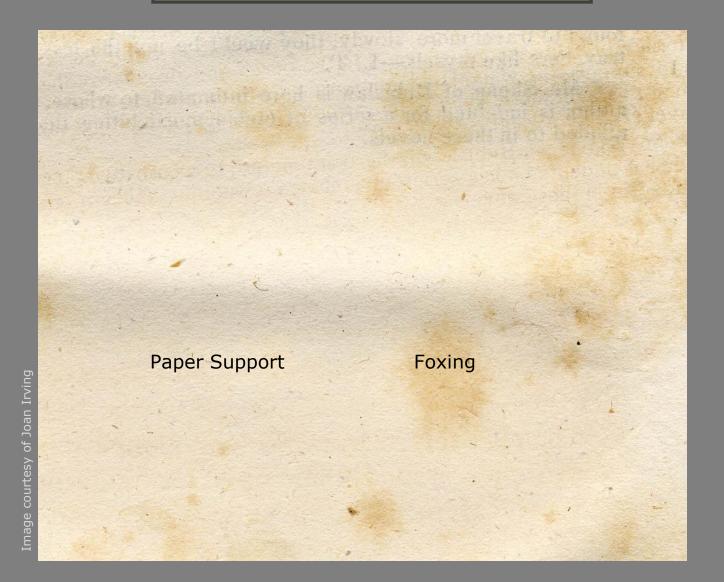


BT Recto, transmitted illumination

BT Recto, normal illumination

LE PIGEON

BT Recto, UV illumination



BT Recto, transmitted illumination

WHAT IS FOXING?

WHAT IS FOXING?

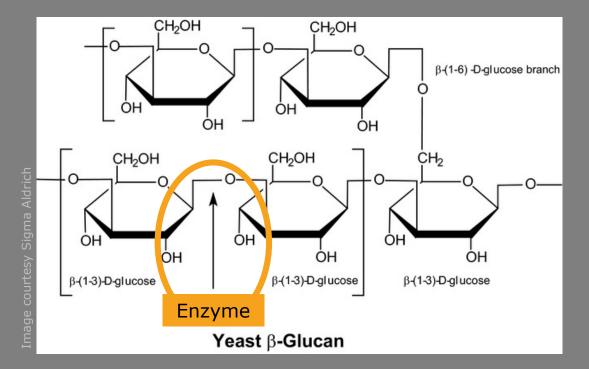
Detail: Foxing, normal illumination

Detail: Foxing, long-wave UV illumination

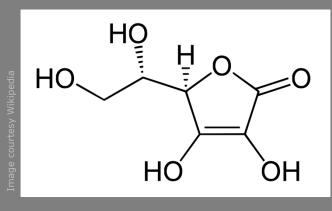
ART + SCIENCE

Treatments for 2nd year Paper Conservation

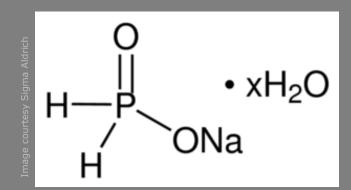
Aqueous Cleaning Methods Seminar with Richard Wolbers


AQUEOUS CLEANING SEMINAR – PRELIMINARY TESTING

First experiment on expendable foxed print:


- Drops of ferric chloride (iron (III) form) were applied to sample
- Agarose gel plugs containing ascorbic acid and EDTA were placed on the ferric chloride spots
- The gel was effective: proves iron (III) can be reduced and chelated

Other expendable examples of foxed prints were treated using various reducing agents, chelators, and enzymes



Enzyme specificity

- Enzyme hydrolyzes poly- $\beta(1\rightarrow 3)$ -glucose
- Lysing enzyme blend contains β-glucanase, cellulase, protease, and chitinase activities; industrial quality
- Lyticase is more targeted; premium quality

Ascorbic acid

Sodium hypophosphite

Other expendable examples of foxed prints were treated using various reducing agents, chelators, and enzymes

Richard Wolbers and Madison Brockman pour in the enzyme solution

Other expendable examples of foxed prints were treated using various reducing agents, chelators, and enzymes

The expendable examples are:

1. placed into a DI bath containing the reducing agent and chelator,

Richard Wolbers and Madison Brockman pour in the enzyme solution

Other expendable examples of foxed prints were treated using various reducing agents, chelators, and enzymes

The expendable examples are:

- 1. placed into a DI bath containing the reducing agent and chelator,
- 2. rinsed in DI water,

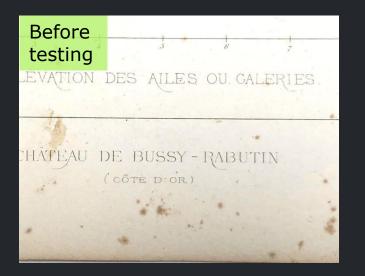
Richard Wolbers and Madison Brockman pour in the enzyme solution

Other expendable examples of foxed prints were treated using various reducing agents, chelators, and enzymes

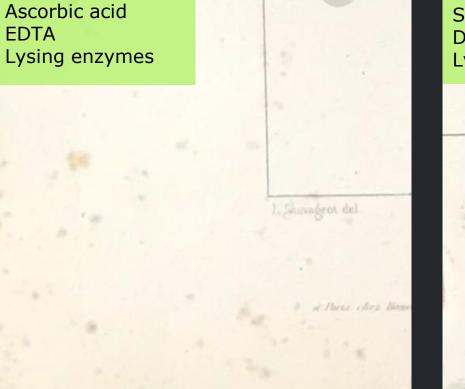
The expendable examples are:

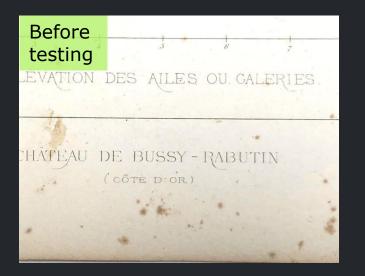
- 1. placed into a DI bath containing the reducing agent and chelator,
- 2. rinsed in DI water,
- 3. then placed in a DI bath containing the enzyme.



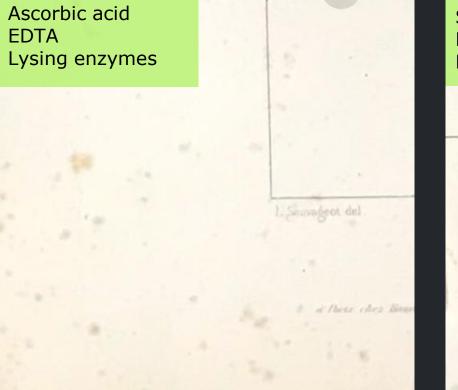

Richard Wolbers and Madison Brockman pour in the enzyme solution

Other expendable examples of foxed prints were treated using various reducing agents, chelators, and enzymes


Sodium hypophosphite DTPA Lysing enzymes



Other expendable examples of foxed prints were treated using various reducing agents, chelators, and enzymes


Sodium hypophosphite DTPA Lysing enzymes Sodium hypophosphite DTPA Lyticase

Other expendable examples of foxed prints were treated using various reducing agents, chelators, and enzymes

Sodium hypophosphite DTPA Lysing enzymes Sodium hypophosphite DTPA Lyticase

- Step 1: Pre-rinse
- Step 2: Reducing agent and chelator solution
- Step 3: Rinse
- Step 4: Enzyme solution
- Step 5: Final rinse

- Step 1: Pre-rinse
- Step 2: Reducing agent and chelator solution
- Step 3: Rinse
- Step 4: Enzyme solution
- Step 5: Final rinse

- Step 1: Pre-rinse
- Step 2: Reducing agent and chelator solution
- Step 3: Rinse
- Step 4: Enzyme solution
- Step 5: Final rinse

- Step 1: Pre-rinse
- Step 2: Reducing agent and chelator solution
- Step 3: Rinse
- Step 4: Enzyme solution
- Step 5: Final rinse

- Step 1: Pre-rinse
- Step 2: Reducing agent and chelator solution
- Step 3: Rinse
- Step 4: Enzyme solution
- Step 5: Final rinse

- Step 1: Pre-rinse
- Step 2: Reducing agent and chelator solution
- Step 3: Rinse
- Step 4: Enzyme solution
- Step 5: Final rinse

- Step 1: Pre-rinse
- Step 2: Reducing agent and chelator solution
- Step 3: Rinse
- Step 4: Enzyme solution
- Step 5: Final rinse

GELS CONFERENCE

International conference in conservation science

- Held in London, UK
- 24 countries represented
- 42 papers presented:
 - o paper
 - \circ paintings
 - o objects
 - \circ textiles
 - o new research
- Numerous other posters presented
- Polysaccharide, polyacrylic, and novel gel systems

GELS CONFERENCE

Agar Street!

International conference in conservation science held in London, UK

WHY GEL?

WHY GEL?

Three common polysaccharide gels

Contact angle tests on different papers

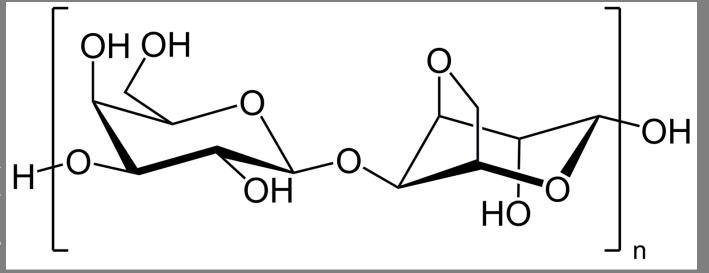
Moisture Control

- Can act as a reservoir for solutions
- Can act as a poultice for degradation products

WHY GEL?

Moisture Control

- Can act as a reservoir for solutions
- Can act as a poultice for degradation products

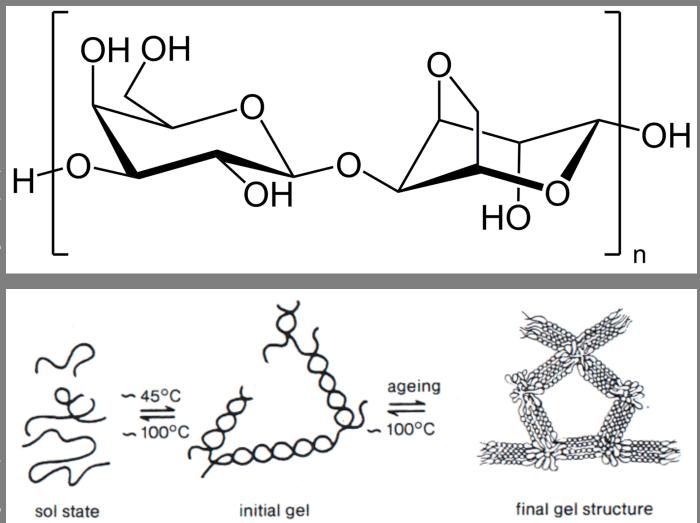

Physical Restriction

- Can be cast in large sheets
- Gel sheet can cover entire object
- Weight may prevent layer separation

WHY AGAROSE?

WHY AGAROSE?

Chemical structure of agarose



Solution Compatibility

- Agarose is a neutral gel
- Can carry ionic and enzymatic solutions

WHY AGAROSE?

Chemical structure of agarose

Solution Compatibility

- Agarose is a neutral gel
- Can carry ionic and enzymatic solutions

Capillarity

- Pore size can be decreased with increasing concentration
- Pore size determines capillary force
- Ex: 5% w/v gel releases moisture slower than 1% w/v gel

BT Recto, normal illumination

TEK-WIPE

GOOD

"SEPARATED AT BATH"

COMPARISON

- Photodocumentation
- Surface cleaning
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

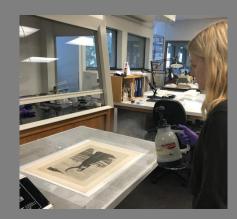
- All rinse solutions sprayed on object under suction
- Gels applied to object for 20 minutes:
 - Under suction for 5
 minutes
 - No suction for 10
 minutes
 - Under suction for 5
 minutes

"SEPARATED AT BATH"

COMPARISON

- Photodocumentation
- Surface cleaning
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

"SEPARATED AT BATH"


COMPARISON

- Photodocumentation
- Surface cleaning
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

TEK-WIPE

- TEK-Wipe kept damp with rinse solutions
- Gels applied to object:
 - 30 minutes of contact time
 - No Mylar or other covering material

- All rinse solutions sprayed on object under suction
- Gels applied to object for 20 minutes:
 - Under suction for 5
 minutes
 - No suction for 10
 minutes
 - Under suction for 5
 minutes

"SEPARATED AT BATH"

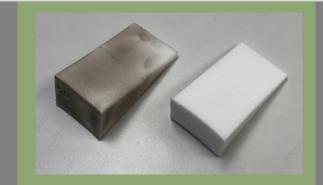
COMPARISON

- Photodocumentation
- Surface cleaning
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

TEK-WIPE

- TEK-Wipe kept damp with rinse solutions
- Gels applied to object:
 - 30 minutes of contact time
 - No Mylar or other covering material

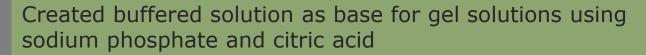
OVERALL STEPS

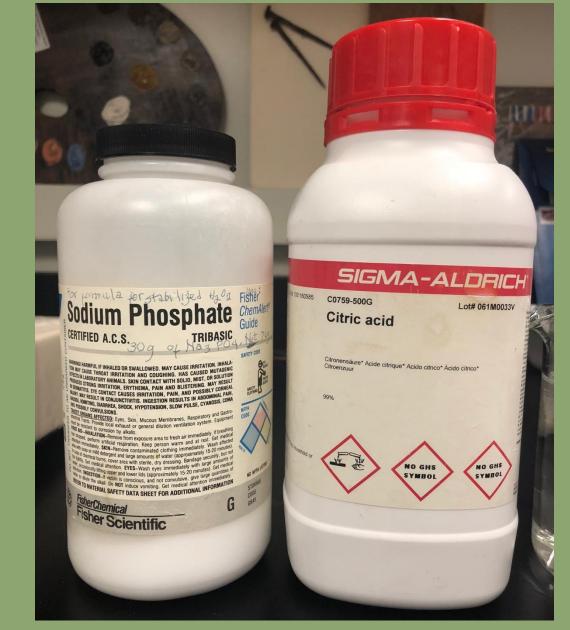

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Surface cleaning with cosmetic sponges and white vinyl eraser crumbs

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary




Surface cleaning with cosmetic sponges and white vinyl eraser crumbs

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Added DTPA and NaPO₂H₂·H₂O to half of the buffered solution for the reducing/chelating gel

OVERALL STEPS

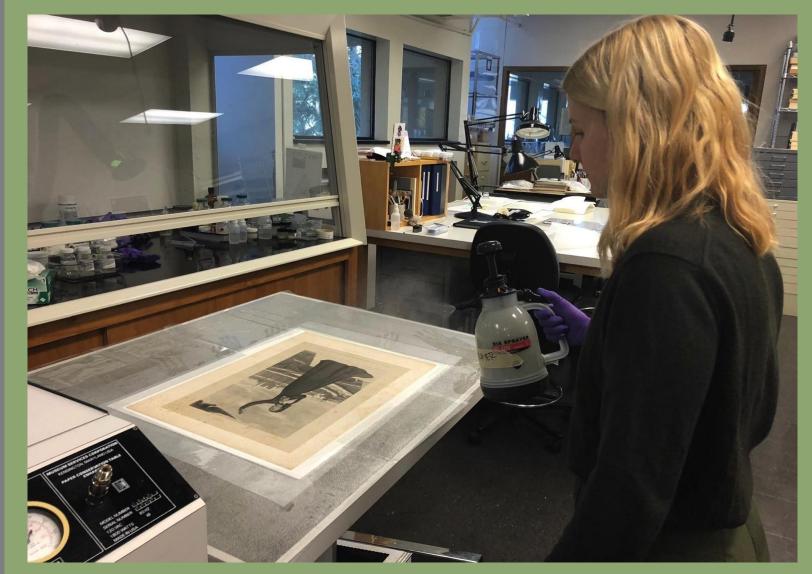
- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Pouring hot agarose gel into Mylar trays

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Using a squeegee to ensure an even thickness of the agarose gel



OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Pre-rinsing using Dia sprayer

Solution: DI water with sodium citrate and citric acid, buffered to pH 6 and conductivity isotonic to print

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- <u>Reducing/chelating gel, pH 7.5</u>
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Applying first agarose sheet atop gampi barrier layer

Solution: Buffered solution, DTPA, and NaPO₂H₂·H₂O adjusted to pH 7.5 with NaOH



OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- <u>Rinse with buffered solution, pH 6</u>
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Rinsing with Dia sprayer

Solution: DI water with sodium citrate and citric acid, buffered to pH 6

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Applying second agarose sheet atop *gampi* barrier layer Solution: Buffered solution at pH 7.5 with lyticase enymes

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Rinsing with Dia sprayer

Solution: Calcinated filtered tap water, adjusted to pH 8 with Ca(OH)₂

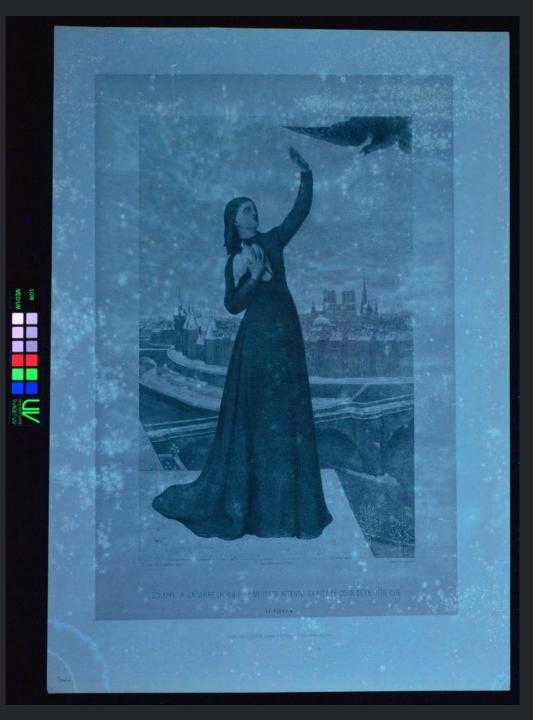
OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

After final rinse, print was placed into a drying stack

after bathing

"Le Pigeon," DT

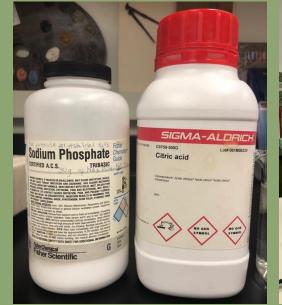


"Le Pigeon," DT after bathing

"Le Pigeon," DT after bathing

"Le Pigeon," DT after bathing

OVERALL STEPS


- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Surface cleaning with cosmetic sponges and white vinyl eraser crumbs

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

OVERALL STEPS

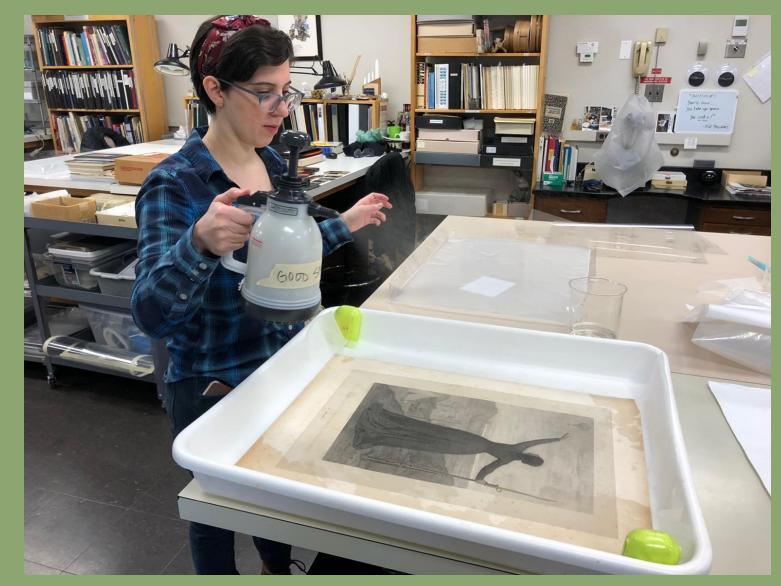
- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Preparing the bathing chamber by saturating the TEK-Wipe in the pre-rinse solution

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Using a squeegee to ensure even saturation and planarity of the TEK-Wipe

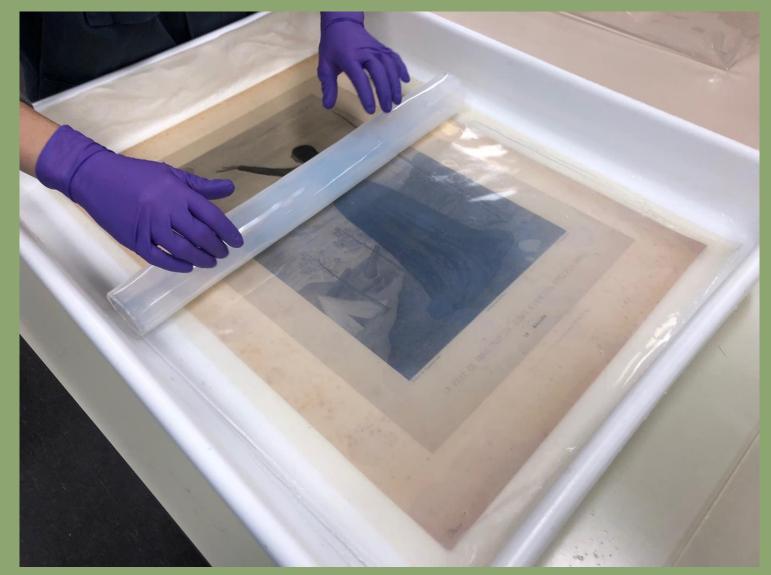


OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Pre-rinsing using Dia sprayer

Solution: DI water with sodium citrate and citric acid, buffered to pH 6 and isotonic to print



OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- <u>Reducing/chelating gel, pH 7.5</u>
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Applying first agarose sheet atop gampi barrier layer

Solution: Buffered solution, DTPA, and NaPO₂H₂·H₂O adjusted to pH 7.5 with NaOH

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- <u>Rinse with buffered solution, pH 6</u>
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Changing TEK-Wipe, saturated with rinse solution

(And having fun!)

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Applying second agarose sheet atop *gampi* barrier layer Solution: Buffered solution at pH 7.5 with lyticase enzymes

OVERALL STEPS

- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

Changing TEK-Wipe, saturated with final rinse solution Solution: Calcinated filtered tap water, adjusted to pH 8 with Ca(OH)₂

TEK-WIPE

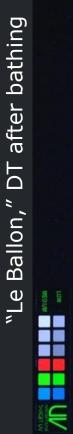
OVERALL STEPS

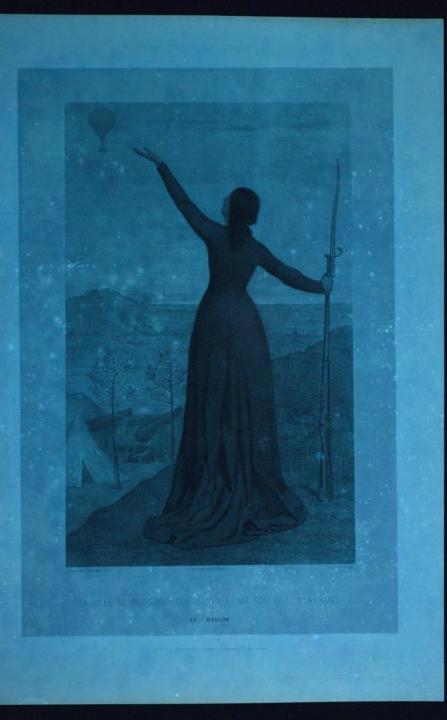
- Photodocumentation
- Surface cleaning
- Materials preparation
- Overall humidification
- Pre-rinse with buffered solution, pH 6
- Reducing/chelating gel, pH 7.5
- Rinse with buffered solution, pH 6
- Enzyme gel, pH 7.5
- Final calcinated rinse, pH 8
- Mend tears
- Humidification/flattening as necessary

After final rinse, print was placed into a drying stack

"Le Ballon," BT

"Le Ballon," DT after bathing





"Le Ballon," BT

"Le Ballon," BT

"Le Ballon," DT after bathing

RESULTS

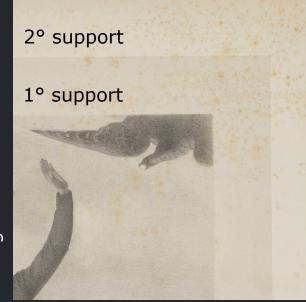
RESULTS

Colorimetry

Minolta CR-221

Locations

- 1° support
- 2° support
- 1° support foxing
- 2° support foxing
- D_{max} image
- D_{min} image



DT

RESULTS

Brightening

Secondary support

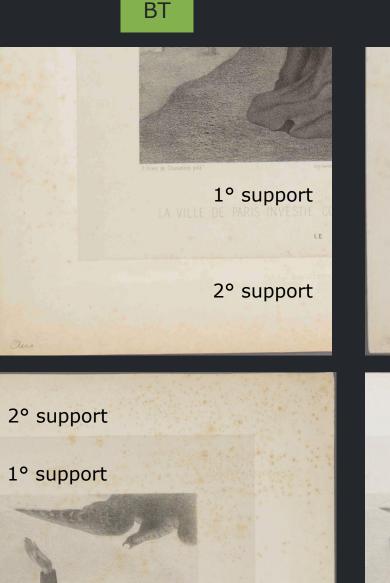
- "Le Ballon" Δ L* = 2.09
- "Le Pigeon" $\Delta L^* = 2.03$
- "Le Ballon" Δ b* = -2.10
- "Le Pigeon" Δ b* = -3.23

"Le Pigeon"

"Le Ballon"

RESULTS

Brightening


Secondary support

- "Le Ballon" Δ L* = 2.09
- "Le Pigeon" $\Delta L^* = 2.03$
- "Le Ballon" Δ b* = -2.10
- "Le Pigeon" Δ b* = -3.23

Foxing Reduction

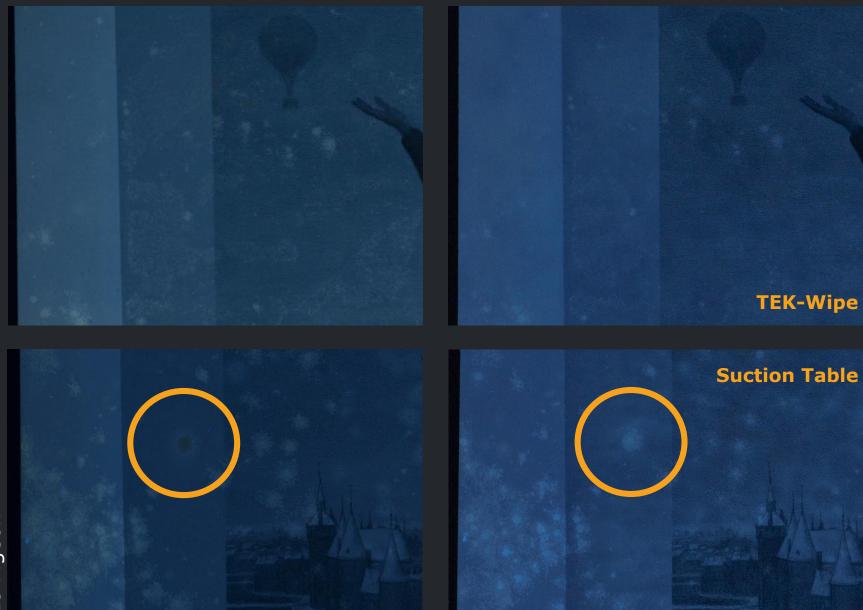
Secondary support foxing

- "Le Ballon" $\Delta L^* = 4.94$
- "Le Pigeon" $\Delta L^* = 1.03$
- "Le Ballon" Δ b* = -4.63
- "Le Pigeon" Δ b* = -0.91

Ballon"

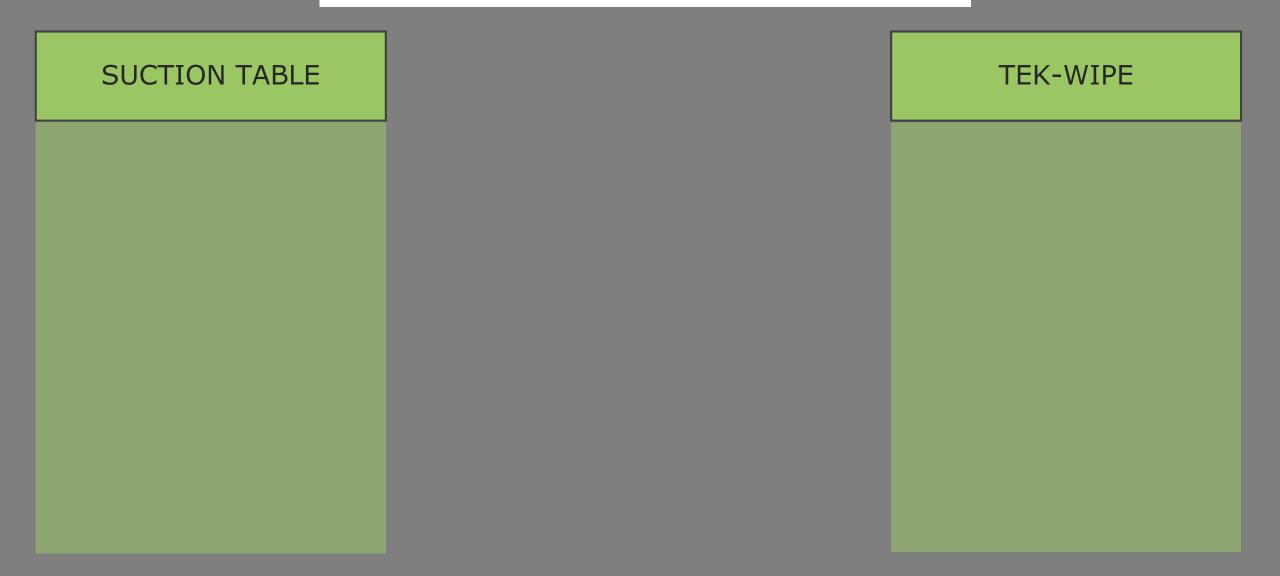

"Le

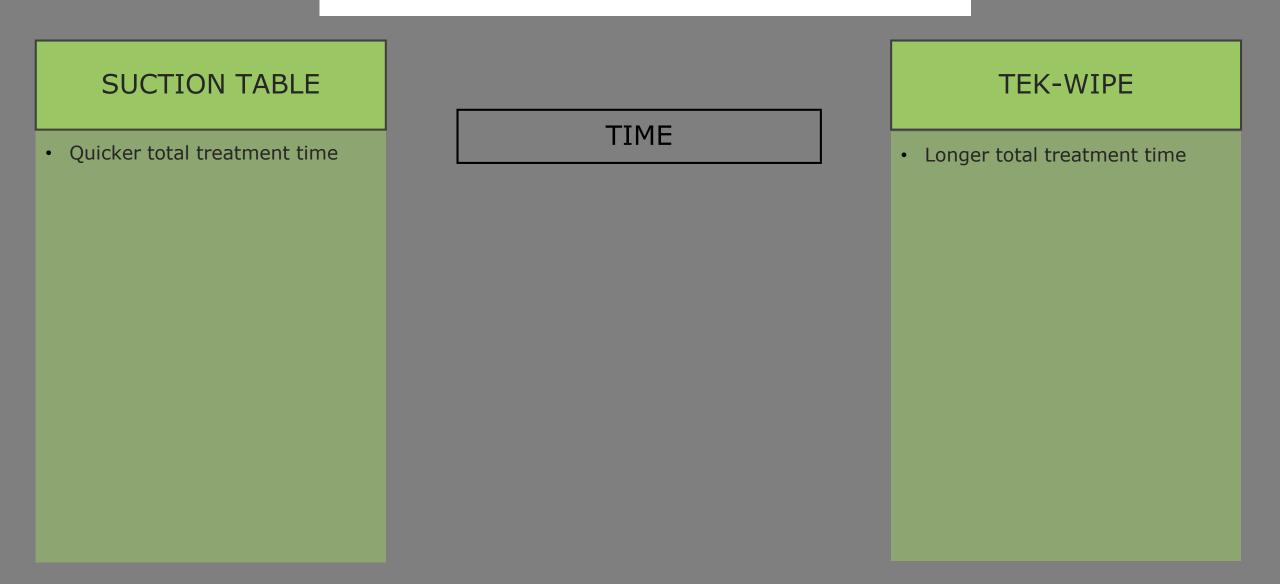
"Le Pigeon"



DT

"Le Pigeon"




"Le Pigeon"

"Le Ballon"

DISCUSSION

SUCTION TABLE

- Quicker total treatment time
- Conservator is active through the entire treatment

INTENSITY

- Longer total treatment time
- Conservator is active only for bath changes

SUCTION TABLE

- Quicker total treatment time
- Conservator is active through the entire treatment
- Gel functions as a reservoir

TIME

INTENSITY

MOISTURE CONTROL

- Longer total treatment time
- Conservator is active only for bath changes
- Gel functions as a poultice

SUCTION TABLE

- Quicker total treatment time
- Conservator is active through the entire treatment
- Gel functions as a reservoir
- Weight of gel and pull from suction

TIME

INTENSITY

MOISTURE CONTROL

PRESSURE

- Longer total treatment time
- Conservator is active only for bath changes
- Gel functions as a poultice
- Weight of gel alone

SUCTION TABLE

- Quicker total treatment time
- Conservator is active through the entire treatment
- Gel functions as a reservoir
- Weight of gel and pull from suction
- Potential for more rinse solution to be delivered in spray form

TIME

INTENSITY

MOISTURE CONTROL

PRESSURE

DEGREE OF RINSING

- Longer total treatment time
- Conservator is active only for bath changes
- Gel functions as a poultice
- Weight of gel alone
- Each rinse solution application limited to amount needed to saturate TEK-Wipe

"Le Ballon," DT after bathing

"Le Pigeon," DT after bathing

"Le Ballon," DT

TEK-Wipe

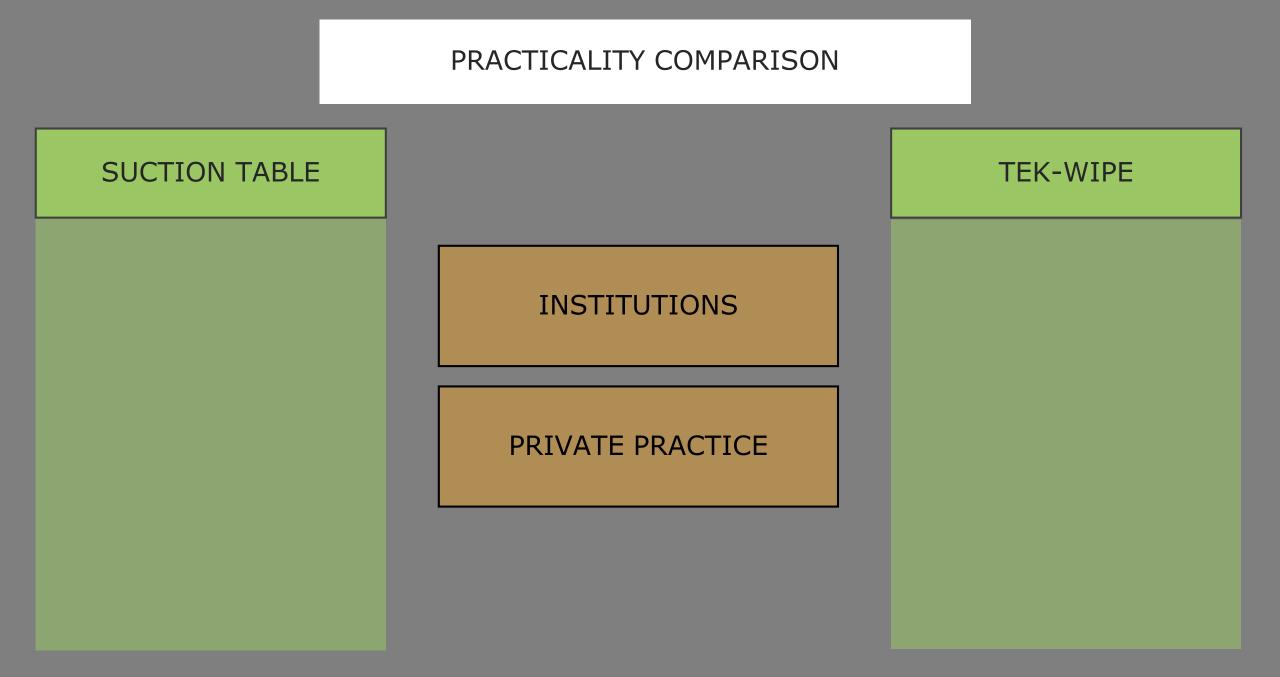
Suction Table

SUCTION TABLE

- Quicker total treatment time
- Conservator is active through the entire treatment
- Gel functions as a reservoir
- Weight of gel and pull from suction
- Potential for more rinse solution to be delivered in spray form
- Potential for uneven spray applications

TIME

INTENSITY


MOISTURE CONTROL

PRESSURE

DEGREE OF RINSING

UNIFORMITY

- Longer total treatment time
- Conservator is active only for bath changes
- Gel functions as a poultice
- Weight of gel alone
- Each rinse solution application limited to amount needed to saturate TEK-Wipe
- Saturated TEK-Wipe provides more even wetting

SUCTION TABLE

 Requires investment in large, expensive equipment

EQUIPMENT

TEK-WIPE

 Requires smaller, more easily available supplies

SUCTION TABLE

- Requires investment in large, expensive equipment
- Greater physical restraint and control of moisture

EQUIPMENT

OBJECT NEEDS

- Requires smaller, more easily available supplies
- Gentler to delicate objects or those with dimensionality

SUCTION TABLE

- Requires investment in large, expensive equipment
- Greater physical restraint and control of moisture
- Conservator must act quickly and know the object can withstand the pull of suction

EQUIPMENT

OBJECT NEEDS

CONFIDENCE

- Requires smaller, more easily available supplies
- Gentler to delicate objects or those with dimensionality
- Conservator has more time to monitor treatment and can safely treat delicate objects

SUCTION TABLE

- Requires investment in large, expensive equipment
- Greater physical restraint and control of moisture
- Conservator must act quickly and know the object can withstand the pull of suction
- Requires electricity. TEK-Wipe can be used instead of blotter.

EQUIPMENT

OBJECT NEEDS

CONFIDENCE

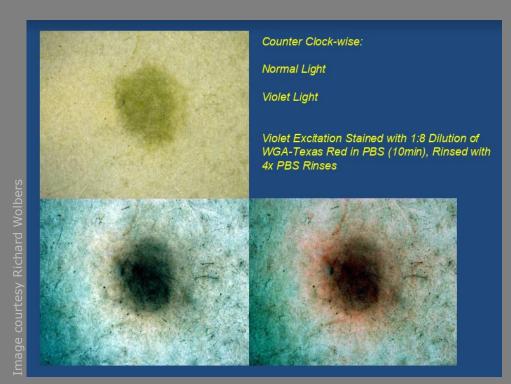
MATERIALS AND

SUSTAINABILITY

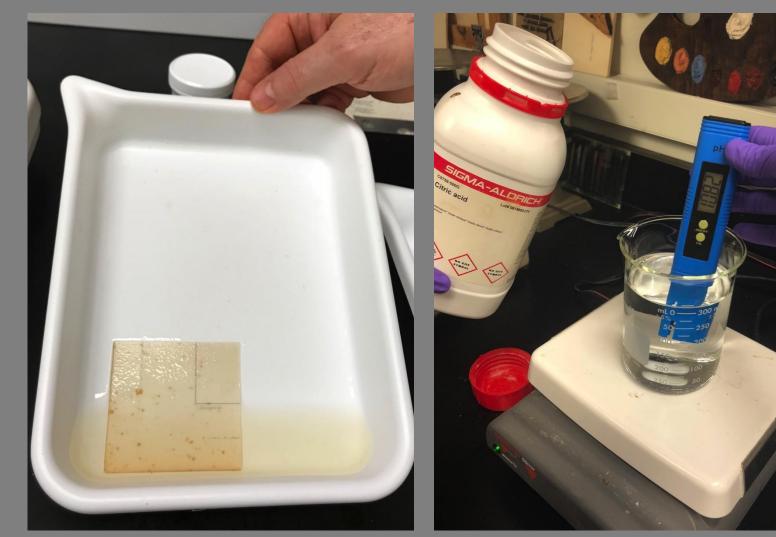
- Requires smaller, more easily available supplies
- Gentler to delicate objects or those with dimensionality
- Conservator has more time to monitor treatment and can safely treat delicate objects
- TEK-Wipe is reusable and thus less expensive than blotter

INNOVATIONS

Successful overall aqueous treatment of foxed chine collé


FUTURE RESEARCH & APPLICATIONS

Using XRF to detect iron presence


Characterization of Foxing

- XRF with small spot size
- Fluorescent stain for chitin on surrogate

Foxing with fluorescent stains

FUTURE RESEARCH & APPLICATIONS

More materials prep for repeated steps

Treatment Protocol Modifications

- Full immersion bath
- Local gel application on suction table
- Blotter washing
- Use of enzymes with higher activity
- Repeated steps/applications
- Hybrid TEK-Wipe/suction table treatment

Full immersion bathing

FUTURE RESEARCH & APPLICATIONS

Other Analysis

- Residue studies
- Chromatography
- Artificial aging
- Mechanical testing
- Conductivity tests

ACKNOWLEDGEMENTS

WUDPAC

Joan Irving – Consultant, Major Supervisor Richard Wolbers – Consultant, Seminar Instructor Debra Hess Norris – Director, WUDPAC ANAGPIC selection committee Class of 2019 Dr. Rosie Grayburn Amber Kehoe Dr. Joelle Wickens Keara Teeter Lauren Fair **Past Foxing Research** Lara Kaplan Jacklyn Chi '18 Barbara Lemmen Kimi Taira '15 Dr. Joyce Hill Stoner Michelle Sullivan '15 Fran Wilkins Yana Van Dyke '00 Theresa Slusser

Gels Conference James Black Rachel Gallan Cindy Lee Scott All the "Gels Angels"

Getty Museum Michelle Sullivan

ANAGPIC 2018 Queen's University

All of you!

The Andrew W. Mellon Foundation The National Endowment for the Humanities Winterthur/University of Delaware Professional Development Fund