Consolidative Reduction of Lead Objects Beth Rydzewski, Winterthur/University of Delaware Program in Art Conservation

Object

 Table top croquet game (American, 1880-1900) – contains wood, textile and metal game components stored within original pine wood box

• Wickets: lead feet cast onto ferrous wire. The wicket feet are actively corroding.

Corrosion:

 Wood and wood products off-gas organic acid vapors such as acetic and formic acid. In the presence of these vapors, the passive oxide layer will be replaced by a powdery, loosely adhered corrosion layer: basic lead carbonate.

Tesse vapors, the passive oxide Fourier-transform Infrared Spectroscopy analysis: corrosion layer will be replaced by a powdery, product from lead wickets (above) and reference spectra for loosely adhered corrosion layer basic lead carbonate (below)

• **Power Supply** – Heathkit IP27 with alternating current to propel the redox reaction

 Cathode (working electrode) – the wicket feet, wrapped in lead foil – reduced, or receives electrons

Anode (counter electrode)
 - stainless steel plates
 shaped into rings to
 surround the lead feet oxidized, or donates
 electrons.

• Electrolyte – .5M sodium sulfate –allows for the flow of ions between anode and cathode

•Voltage – 2.3V-2.4V

• Current - less than 200mA

Treatment

• Connection wires link anode and cathode to the power supply. Stainless steel wire links the anode and cathode to the connection wires.

 To prevent corrosion, the ferrous wire component of the wicket was coated with 10% B-48N in acetone. The portion submerged in the electrolyte was further coated with Museum Wax.
 Breaks and cracks in the lead feet where ferrous wire was exposed were also covered with wax.

Consolidative Reduction

- Uses:
- Objects with surfaces that need to be preserved
- Metals predominantly transformed into corrosion products

Method

• Corrosion products are converted back to metal through the transfer of electrons from another metal with a lower electrode potential (reduction).

Low voltage and current enables gentle reduction process and prevents
aggressive removal of corrosion through evolution of hydrogen bubbles

Research and Testing

• Lead wicket mock-ups created and artificially corroded in the presence of acetic acid then tested for consolidative reduction using either sulfuric acid or sodium sulfate electrolyte

- Sodium sulfate selected as the most appropriate electrolyte
 Advantages: least corrosive to the lead, should the electrical circuit be interrupted, and least toxic to handle.
- •Disadvantages: corrodes the stainless steel anode, necessitating frequent changes of electrolyte

Acknowledgements

The author would like to thank objects conservator and supervisor Bruno Pouliot for guidance and advice, objects conservators Margaret Little and Lara Kaplan for assistance and advice with research and testing, paintings conservator Richard Wolbers for advice on procedure, furniture conservator Mark Anderson for consultation on the wood elements, Lauren McMullen (WUDPAC '09) and Samantha Springer (WUDPAC '08) for beginning the research and treatment, Meg Craft, Senior Objects Conservator, Walters Art Museum for consultation and advice; Jennifer Mass, Senior Scientist, Catherine Matsen, Assistant Scientist and the Scientific Research & Analysis Laboratory, Winterthur Museum, for assistance and advice with scientific analysis.