Hazard Communication Update
The New Year marks an important point in the implementation of OSHA’s revised Hazard Communication Standard (HCS); the labeling provisions of the standard went into effect in 2015. This means that all chemicals you receive as of January 2016 should have the new Global Harmonization System (GHS) label format, and all Safety Data Sheets (SDSs)–formerly MSDSs–must follow a uniform sixteen section format.
The purpose of both the label and SDS are to provide information for making decisions about using the product safely. The label is intended to deliver critical information at a glance, whereas the safety data sheet provides greater detail.
What does this mean to you, the end user?
First and foremost, it is important to understand that the information provided is based on the intrinsic properties of the material – pH, flammability, affinity for a specific organ or tissue, etc.
The risk associated with the product depends on circumstances surrounding its use, storage and handling.
While chemical manufacturers have a responsibility to tell you about the hazards of their products along with basic guidelines for safe use, the manufacturer has no way of knowing exactly how you intend to use the product. It is the end user’s responsibility to evaluate product information in the context for which the product is being used in order to minimize risk.
The example label below is in the required GHS format:
- The product is clearly identified with the name Xylene.
- This container of xylene has the signal word Danger. The signal word is selected following set criteria for hazard determination. There are two possible signal words – Danger and Warning. Danger indicates more severe hazard than Warning. [1]
- The hazard statements for this container of xylene are: Flammable liquid and vapor. Causes skin irritation. May be fatal if swallowed and enters airways. May cause drowsiness or dizziness.While straightforward and clear, issues of vapor generation/minimization and selection of appropriate personal protective equipment require more in-depth analysis of product use. The label is providing an indicator of risks you must consider.
- Three “pictograms” correspond to the particular hazard statements:
- The flame indicates flammability
- The exclamation mark indicates irritation and narcotic effects (drowsiness or dizziness)
- The torso with starburst indicates aspiration toxicity.
NOTE: Pictograms have to be considered along with other label information.The exclamation mark pictogram for example may represent: Irritant (skin and eye), Skin Sensitizer, Acute Toxicity, Narcotic Effects, Respiratory Tract Irritant and Hazardous to Ozone Layer (Non-Mandatory). Because a pictogram may have multiple meanings it should never be relied upon as a stand-alone source of hazard information.
- Precautionary Statements used on the example label address prevention and response.
Prevention: Keep away from heat, sparks and open flames – No smoking.Keep container tightly closed. Avoid breathing vapors or mist. Wash hands and any other contaminated skin after handling. Wear protective gloves and eye protection. Use only outdoors or in a well-ventilated area.
Response: If swallowed, immediately call a poison center or doctor. Do NOT induce vomiting. If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center or doctor if you feel unwell. If on skin: Take off all contaminated clothing. Wash with plenty of soap and water or shower. Wash contaminated clothing before re-use. If skin irritation occurs: Get medical attention.
In case of fire, use foam, water spray or fog. Dry chemical, carbon dioxide or sand may be used for small fires only. Do NOT use water in a jet.
- If this were a real label, it would also have the name, address and phone number for the manufacturer or distributor of the material.
As labels go, this sample provides a quite a bit of precautionary information. HOWEVER, it still requires interpretation with respect to use. Is a large quantity of the material being used outdoors on a hot day or just a few drops on a cotton swab in a laboratory? How much ventilation is necessary? What is the correct type of protective glove? Answers to these and similar questions will enable you to minimize the risk associated with use of the chemical.
More detailed product information is available on safety data sheets. New formatting requirements provide consistency which is intended to make the SDSs more user friendly. SDSs are also required to include certain minimal information which is explained here.
As a consumer, it is important for you to understand the new label elements and take the time to obtain and review the safety data sheets so that you can make informed decisions about safe chemical use and storage and disposal.
When you receive new chemicals you should replace your old bottles and MSDSs with the new bottles with GHS-compliant labels and updated SDSs. All secondary containers (smaller bottles you fill yourself) should also be appropriately labeled. Labels are available through retailers, such as www.mysafetylabels.com, and laboratory and safety suppliers. Free GHS label-making software is also available.
Additional information about Hazard Communication and the Global Harmonization System is available at www.OSHA.gov and through the AIC Health & Safety wiki.
UPDATE (2/29/2016): In response to requests for more information on how the other labeling systems relate to the new GHS labels–
The purpose of well-known “diamond label” from the National Fire Protection Association (NFPA), NFPA 704, is to provide basic information for emergency personnel responding to a fire or spill and those planning for emergency response. The number system is 0-4 where 0 is the least hazardous and 4 the most hazardous.
The Hazardous Materials Identification System (HMIS) is a numerical hazard rating that incorporates the use of labels with color developed by the American Coatings Association as a compliance aid for the OSHA Hazard Communication Standard. This is a tool that can be used for in-house labeling of secondary containers. The HMIS Color Bar is similar to the NFPA fire diamond. Before 2002 the fire diamond and the color bar both had sections colored blue, red, white, and yellow. After April 2002, with the release of HMIS III, yellow in the color bar (which stood for reactivity) was replaced by orange, standing for physical hazard. The fire diamond is designed for emergencies when information about the effects of short, or acute, exposure is needed. The color bar is not for emergencies and is used to convey broader health warning information. Numeric ratings have historically been:
(4) Life-threatening, major or permanent damage may result from single or repeated overexposures (e.g., hydrogen cyanide).
(3) Major injury likely unless prompt action is taken and medical treatment is given.
(2) Temporary or minor injury may occur.
(1) Irritation or minor reversible injury possible.
(0) No significant risk to health.
A new version of HMIS (HMIS Implementation Manual 4th edition) contains the information necessary to align with the written hazard communication program and labeling requirements of the revised OSHA HCS (March 26, 2012). http://www.paint.org/advocacy/occupational-health-and-safety/hmis/
As explained above, manufacturer’s labels on shipped containers include six standard elements:
- Product Identifier matching the product identifier on the safety data sheet
- Supplier Information including name, address and phone number of responsible party
- Signal Word, either “Danger” or “Warning” depending upon severity
- Pictogram(s), black hazard symbols on white background with red diamond borders that provide a quick visual reference of hazard information
- Hazard Statement(s) that describe the nature of the hazard and/or its severity
- Precautionary Statement(s) that provide important information on the safe handling, storage and disposal of the chemical
Exactly what information goes on the label for items 3-6 is determined by the classification/categorization of the chemical which also is much more systematic under GHS. For instance, any chemical that is classified as a Category 1 Flammable Liquid will carry on the label the signal word “Danger” and the hazard statement “Extremely flammable liquid and vapor.”
Where things start to get tricky between GHS and the NFPA/HMIS systems is in the use of numbers. With GHS, the lower the categorization number, the greater the severity of the hazard. This is opposite of the way numbers and severity relate to each other under NFPA and HMIS. For instance, with NFPA, the higher the number, the greater the severity.
The numbers in the GHS system, as adopted by OSHA, do not show up on the label, instead they are used to determine what goes on the label. The numbers appear in section 2 of GHS formatted safety data sheets along with other information describing the hazard.
Comparison of NFPA 704 and HazCom 2012 Labels can be found on an OSHA Quick Card.
For more information on the GHS system, see the Health & Safety Committee’s Guide, Revised OSHA Hazard Communication Standard Improves Chemical Label Information–Changes You Need to Know. Please note that the Committee’s 2005 article “Health & Safety: A Conservator’s Guide to Labeling Hazardous Chemicals,” has not yet been updated to reflect the current GHS system.
[1] 29 CFR 1910.1200, Appendix C.The Hazard Communication standard defines the terms warning and danger, requires that they be included on labels and states danger is more severe than warning. Appendix C shows how the label elements are allocated. For example, if the hazard determination per Appendix A results in a category 1 acute toxicity, the word Danger is used