43rd Annual Meeting – The Year of Light session – May 15, 2015 – "Mark Rothko's Harvard Murals: An Image for a Public Space" by Narayan Khandekar

As a big fan of Mark Rothko, I was particularly jazzed to hear this talk. The idea of “restoring” faded works by Rothko is particularly intriguing to me, since color and light are of utmost importance with his work: atmosphere matters most.
Mr. Khandekar, who gave the talk, stated that he was only the spokesperson for the team. This was clearly a collaborative effort with many different people including those familiar with Rothko.  With all of these people working on this project, it helped create an all-around vision, Khandekar said.
For those unfamiliar with Mark Rothko, he was an artist in the Abstract Expressionist movement. He wanted people to be immersed in his paintings. He believed his paintings formed an environment around the viewers, which is how these mural works came to be. Rothko said, “I have been preoccupied for a number of years with the idea of translating my pictorial concepts into murals, which would serves as an image for a public space.”
Khandekar mentioned similar mural projects, such as the Seagram Murals, which I saw at the Tate Modern back in 2010. I completely understand what Rothko was trying to project onto the viewer: the murals creates an immersive atmosphere that made me never want to leave the room. Seriously, I sat in that gallery space for a long while, feeling as if I would lose something if I left the room. It was one of the most profound experiences I had with an artwork installation. I found out at this talk that the pieces were brought together in real life only as a temporary real life installation (they were commissioned for the Four Seasons restaurant in NYC and apparently were never installed) and is together only online. So I was one of the fortunate few who got to see this installation in its entirety live and in person!
ANYWAY, back to our regularly scheduled program. The Harvard Rothko Murals were installed in the Holyoke Center at Harvard in 1963. The Holyoke Center is a Brutalist building designed by architect Josep Sert. The installation room was originally intended to be a Harvard fellows’ meeting room, but instead was used as a high-level (read: important people only) dining room, but had also been used for other special events, including a disco party! Viva La Saturday Night Fever!
There were 5 pieces in total as part of the installation that were all butted up against each other: three pieces fit into a niche in the room, creating a triptych, and the other two were displayed on other walls. This room had floor-to-ceiling windows so the paintings received A WHOLE LOT of light. Rothko asked the folks at Harvard to keep the blinds drawn as much as possible, but sadly the blinds often remained open. As a result, the paintings faded and were removed from display in 1979.
So now we come to the 21st century in search of a solution: we want to show these murals again. How can we treat these so display would be possible? In order to investigate the possibilities, the team broke the art viewing experience down into three aspects: the painting, the viewer and the light.
The paintings themselves have a surface texture to them: the media is egg tempera and distemper (also a favorite medium of another favorite of mine, Edouard Vuillard); and there were glossy versus matte areas. Any type of wholesale restoration would have hidden these aspects of the work, so physical intervention was not pursued.
The viewer experience had evolved over the years. Now we have visual digital enhancement tools like Google Glass, HoloLens, and Oculus Rift. These will serve a purpose for museum visitors, but that didn’t seem to be the solution for this project either.
What did seem like a possibility was the use of light. It affects how the viewer would see the work without changing the surface characteristics of the work. So, compensating using light seemed like the best option.
They used color slides that were taken back in 1964 (Ektachrome), but of course those slides faded as well. In order to determine the original colors, they utilized one of the panels that had not been on display – Panel 6 – to get the faded colors in the slides right. They worked with a media lab in Basel, Switzerland in order to get the faded slides back into balance using Panel 6 as the color reference, which was applied to all of the paintings.
Now here’s where it got complicated and you might wait for the post-prints: somehow folks at MIT (I think it was MIT) took that color reference rendering from Panel 6, and applied it universally to the slides to create digital images of the original murals. Using a camera-projector system, a compensation image was formed and then aligned on the original panels. Then BAM! Rothko’s mural paintings are back without any alteration of the original. We’re talking AMAZING resolution here, folks: over 2 million pixels!! Freaking. Genius.
So the really awesome part was the diversity of reactions to this “restoration.” I tried to capture their original quotes, but I imagine I am paraphrasing or only got a portion of the quote.
• Terry Winters, artist: “Drama of turning off the projectors is like the move from comedy to tragedy unexpectedly!” (I kind of love that, but that is the actor in me, I’m sure.)
• Christiane Paul: “We have two versions: the historic and the restored.”
• Jeffrey Weiss Guggenheim: “The light within the painting is lost… Deceptive illusions is unnerving…”
• Brad Epley Menil: “Restored is a digital remaster and the unrestored version is like a vinyl LP. Which is the most authentic version? At what point do we accept change?”
• Kate Rothko Prizel: “The setting is not a problem. You experience the room. The space felt right. It feels like Rothko luminosity.”
• Christopher Rothko: “It feels right because my father’s brush strokes are still there.”
The display is up until July 26: I’m totally going because in order to really experience Rothko, you have to be in the room with the paintings, as the artist intended.

AIC RATS – Microclimates – June 1, 2011

AIC RATS – Microclimates
June 1, 2011

Museum environmental guidelines and the implementations of change
Charlie Costain – Conservation and Scientific Services,
Canadian Conservation Institute (CCI)

Follow up to “plus/minus” dilemma we’ve been having otherwise known as: “Should we loosen up the environmental restrictions on museum loans to other institutions?”

At CCI – 2,500 museums support across Canada and 500 archives. They were looking for an approach that can be adapted for a variety of organizations.

Recap of “Plus/Minus Dilemma” at AIC 2010: http://www.iiconservation.org/dialogues/
• Jerry Podany: IIC – heritage conservation in the broader context of the modern world;
• Max Anderson: candor and honesty of what you’re doing and flexibility between parties and technical capacity of the buildings and energy concerns;
• Nancy Bell: in the UK AVISO group ask staff at Tate to reexamine conditions for loans and exhibitions – carbon emission reductions and new funding for research IGOR;
• Karen Stothart: talked about the balance of need of exhibitions and loans and the protection of those 50% RH does shift during winter;
• Cecily Crzywacz: there is no magic bullet for conditions for all institutions;
• Stefan Michalski: he felt that consensus that 10% +/- OK for most collections;
• Terry Weisser: conservators are concerned about energy savings, but need to take care of collections also. Welcomes more research in this area for wider and looser parameters.

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers)
This is the organization that conservators look to when determining setpoint and HVAC standards for museums. There is an ASHRAE handbook that is put out every three years that includes information about designing museums . However, the temperature and RH setpoints/ standards have not changed since 1999! This handbook is written in engineer language; design parameters; system selection for engineers. ASHRAE proposes classes of control: AA, A1, A2, B, C, and D. Cool, cold, and dry are the best conditions (duh) and each class has its collection risks and benefits. See list below:

Class of control / Relative Humidity /  Temperature
AA: 50% RH +/- 5%   75°F (high) 55°F (low) +/-4°F
A1: 50% RH +/- 10%   75°F (high) 50°F (low) +/-4°F
A2: 60% RH in summer and 40% RH in winter +/- 5%   75°F (high) 50°F (low) +/-4°F
B: 60% RH in summer and 40% RH in winter +/- 10%   75 +/- 5 and cold +/-5
C: 50% RH +/- 25%   Below 85°F
D: Below 75% RH   Below 85°F

ASHRAE also has building types; higher Roman numerals have more climate control
Climate control: (VI) collection vaults, (V) museums
Partial control: (IV) and (III)
Uncontrolled: (II) and (I)

• Consistent with risk approach to making decisions on collections
• Flexibility for difference types of collections and locations and building types
• Facilities communication between engineers and collections folks

Example: Risk assessment on historic house in Ontario
First questions during the assessment: collections and relative value of collections; created collections “pie” chart; building vs. collection; and collections overall by percentages.

They decided the building was the most important asset, but spalling was occurring because they were trying to maintain 45% RH inside; reduce RH will reduce strain on building envelope.

There is some confusion about RH and temperature. There is a perception that RH is an issue of paramount importance which can lead to inappropriate RH as in the above example.
• Lack of awareness of options
• Lack of transparency in operations, loans and grant requirements
• As a result, discussions have begun on the federal level in Canada

“Saving Money, Preserving Collections” dialogue
• Overview of evolution of guidelines for museum environment
• Operation of facilities – facilities managers
• Current operations – shared opportunity for savings
• Conditions for loans/ funding
What temperature and relative humidity can we have to satisfy loan and grants?
Operating Conditions in National Museums
o Differs depending on type of building and collections
o Purpose building facilities run at 50% RH +/-5% in the summer and 43% RH +/- 5% in the winter, with a temperature at 21°C

Agreement on the following from museums across Canada:
• When sending materials to another Canadian museum, the loaning museums will not demand better conditions than their own
• Museums will lend objects containing hygroscopic materials to institutions that can achieve Class A conditions
• Federal grant class A will be requirement where applicable
• This is not a strait jacket – meant to be a starting point – obligation as to why this object is not suitable – more candor and information exchange
• Having the discussion and getting agreement from some of these major players is a starting point
o Moving from a rules based approach to a risk based approach – there is work to be done in terms of communication and research

Any suggestions? CCI would appreciate your input – drop him a line! Charlie.costain@pch.gc.ca 613-998-3721

The Off-Grid Museum
National Museum in Denmark
Dr. Poul Larsen and Tim Padfield

Energy savings – Denmark has been doing it WAY before it was cool and hip. Tim has worked with saving energy in conservation for many years. The presentation was given by Dr. Larsen from the National Museum in Denmark.

He showed us buildings that are relevant to the subject: energy savings

As you know, buildings depend on external energy sources to function – light, temp, RH, etc. Museums are big time energy consumers and Denmark is trying to create a building that doesn’t rely on external energy sources and uses only renewable energy sources, taking into account climatic exceptions.

One example that he gave was this Nydam Iron Age warship that was exhibited in a temporary shelter designed as a balloon. As you can imagine, energy use quite large because sealing a balloon is no small feat. Needless to say, the “balloon” leaked, causing an unstable climate – maybe C or D class in ASHRAE terms. Air conditioning depends heavily on the building envelope and the envelope was failing in this example. TO add some more fun to the mix, there was a 6 hour power outage and the balloon collapsed – only held up by wires. Constant energy supply may become a luxury and not a constant.

He showed us another warship that was transformed into an exhibition building – a submarine-turned-museum. The interior of the submarine had a kitchen, bath, and “artwork” aka pinup girlie pictures. Hilarious!! This space has a very unstable climate – doesn’t even class in ASHRAE system.

Example: A museum building with thick concrete walls located in the open landscape from the 1930s. Truly off grid – not even a telephone line and all one level. Museum has only natural lighting – insulation – high ceiling for human health requirement. Natural ventilation sufficient for air quality, no temperature and RH control. In winter we need heat for humans – ground heat pump is the most energy efficient way to heat.

Example: Gallery for minerals display that has a ground heat pump for winter heating and underfloor heating. It uses 4-5 kilowatt hour for heat. Wind energy index can be used as an energy source – a lot of wind in winter and coexists well with heat pump that could be powered by wind energy if necessary. The gallery has a heavy structure to give thermal stability and thermal insulation to reduce heat loss. Small windows reduce solar heating but allow for natural lighting. No humidity control but passive humidification from the walls but not intended – buttresses are taking in the rain water. Efflorescence is occurring on the walls, but it is not as dry in winter so it actually helps.

Example: 17th century house in Liselund Park. This house is only open to public in the summer and not heated with interior impermeable surfaces and finishes. Dehumidified air is injected to each room through small ducts in the floor to keep RH down. It works quite well according to environmental data. However, the temperature is not steady. Dehumidifier keeps the RH to about 60% – but the dehumidifier is totally keeping it in check – if it fails you’re in trouble. Humidity-sensitive objects should be in microclimates because mechanical systems cannot be relied upon. Energy consumption for dehumidification is constant over the year – could use water turbine to power the dehumidification in summer, which would be a good off-grid solution. Mechanicals are unpredictable, but water freezes so what about winter?

Example: Runic stones in Jelling from 950-970 BC outside – no energy use at all (ha ha ha). Polychrome paintings that were on the stones are lost however – copies are displayed in museum nearby – photovoltaic panels integrated into skylights to give natural and artificial light – solar energy better in summer than winter, but condition stability problem during the seasons. Combine solar and wind energy then it will meet required energy needs for museum.

Read more at www.conservationphysics.org

Some of the questions/ comments:
Isn’t there a substantial cost to building thick walls? They anticipate that the buildings will last many years so that the cost of building will be gained back due to that.

One should note the practical limitations in USA with this type of off-grid environmental controls. Denmark is in Zone 5 maritime – mild climate; the USA varies from Zone 1 Humid to Zone 7 Dry maritime and humid – Zone 5 is very small geographically. One should design a museum to the specific location and its limitations in terms of environment.

New Technologies for Energy Storage Applied to Cultural
Heritage Buildings: The Microclimatic Monitoring of Santa Croce
Museum in Florence
Consiglio Nazionale delle Ricerche,
Istituto di Scienze dell’Atmosfera e del Clima CNR-ISAC
Francesca Becherini

I will admit that I had a difficult time following this talk, so I apologize in advance for the lack of information here. The main idea of this talk was to demonstrate a method of conserving heat (as energy) in Santa Croce, Florence by using a special kind of material in drywall. Storing and then release energy is the concept. I’m thankful I understood that!

Well… here goes nothing…

The folks at the Consiglio Nazionale want to develop, evaluate, and demonstrate an affordable multisource energy thermal and electronic storage system integrated in building based on new materials, technologies, and control system: http://www.messib.eu/

So they installed this system in two civil buildings: S Croce Museum was one of them. S Croce has heating system radiators, but no air conditioning. Illumination is halogen and metal halide lamps.

As I understood it, the materials that will hold the energy or heat are phase change materials (PCM) which has the capacity to stores much more heat per unit volume. It also has a desirable melting temperature in the desired temperature operation range, a high specific heat, small volume change with high thermal conductivity. This material (which I never actually got the name of – maybe they never said it because it’s proprietary?) is available as a paraffin or hydrated salts and used in heating panels and solar (as in sun) systems. There is not much information on the long-term durability of this material nor is it inexpensive. PCM embedded in gypsum plasterboards PCM distributed in 20 with respect to gypsum.

So measurements of this material were made with automatic and manual air, temperature, relative humidity, and surface temperature contact on the surface of the art (I think) as it hung on the wall where the PCM material was infused in the gypsum wall. They chose rooms based on how much art was displayed in the room. Main results are below (as best as I caught them):

Installed panels with monitors for air temperature, RH, temperature of panel, and contact panel of wood board to simulate canvas painting. They also monitored VOCs in museum and lab. Found aromatic chlorinated alcohol terpene compounds, aldehydes, and organic acids. PCM emits low VOCs, but it is strongly reduced when in gypsum panel. Can’t tell about aldehydes and organic acids – formic acid is from gypsum panel perhaps? Not PCM? There were lots of graphs about the PCM effects in the lab. Honestly the explanations aren’t totally clear – something about the melting point of PCM? Maybe?

Anyway, according to all of the testing and graphing, they need more information on the material’s thermal behavior, VOCs emissions, and interactions of VOCs and artifacts.

39th Annual Meeting – Workshop: From the Lab to Field Choosing and Using Personal Protective Equipment (PPE)

From the Lab to Field Choosing and Using Personal Protective Equipment (PPE)

Dawn Bolstad-Johnson, MPH, CIH, CSP

Chris Stavroudis, Paintings Conservator in Private Practice

So I tried to take down as much information as I could that was presented at this workshop which, by the way, was excellent. There is a LOT of helpful and interesting information that (I hope) will be helpful and interesting to our blog-reading audience.

So, here we go!

Objectives of the Workshop:

  • Determine minimum PPE needed in the lab at disaster scenes
  • Review of Typical Exposures Hazards
  • Routes of Entry
  • Hierarchy of Controls
  • Common PPE
  • Common complacency of not using PPE
  • Health effects from typical exposures
  • Tips to protect yourself
  • How to address situations where all parties are not wearing PPE

Hierarchy of Controls

  • Engineering Controls
    • Local exhaust (e.g. fume hood)
    • Product replacement
  • Administrative Controls
    • Employee rotation for a task which involves the exposure, so that one person is not exposed to the hazard repeatedly
  • PPE is always the last resort
    • Wearing PPE should NOT create a new hazard
      • E.g. fire fighters have to wear it because you cannot engineer or administrate the hazards out
  • OSHA standard 29 CFR 1910.132
    • Employers need to do a hazard assessment to determine if hazards present necessitate the use of PPE
    • Students and volunteers are also included under this as well
    • Employers must certify in writing that the hazard assessment was conducted – job hazard assessment: hazards identified in all parts of the job that needs to be performed e.g. soot cleaning from painting
    • PPE selection must be made on the hazard assessment and affected workers properly trained. Defective or damaged PPE must NOT be used

Routes of Entry

  • Typical Hazards to Conservators
    • Inhalation
      • Particulate
        • Mold
          • Ubiquitous
          • Health concerns arise when the concentration of mold inside the building is significantly higher than outdoor concentrations
            • We are in filtered air inside building which should be lower than outdoor
          • Identifying the concentration of the mold is more important than identifying the actual species of mold
          • “Black mold” scare was the result of a report by the CDC that babies were inhaling stachybotrys and lungs were bleeding from the inside.  The actual truth was discovered in the autopsies: only the upper respiratory tract was affected.  The CDC retracted their statement after discovering the error, but it’s too late and the media has blown it all out of proportion.
          • Sampling techniques
            • Air samples on agar – potato dextrose agar for mold in early 1990s
            • Now with spore traps for air sampling – cover slide inside a cassette – captures live and dead – sample is about 5 minutes of air flow sampled
            • Swab samples also
            • Bulk samples (e.g. sample on wall, ceiling) – culture is performed
            • Need to compare with the OUTSIDE mold spore numbers to get an accurate picture of the problem
            • Where do you take the sample? Take 3 samples in the size of Marriot’s Salon A and 2 samples outside – 2 samples for a smaller space or 1 for a very small space
            • To get rid of it: remove moisture (e.g. dehumidifier); if it’s in the wall and has no way to get out (e.g. electrical outlets, phone jacks), there is nothing to worry about
            • Dry spores are just as harmful as active spores
            • As a practice, in a water soaked facility, check not only artifacts and shelving, but also the walls and the carpeting
            • Dust near water damage could be dry mold and therefore a respiratory hazard
            • Working in fume hood or elephant trunk is advised when working with any type of mold
            • Vacuuming: use HEPA vacuum and throw away the filter in plastic bag
            • Nilfisk’s helpful hint for filter disposal: put plastic shopping bag under the vacuum filter in the vacuum and then when you throw it away, you can bag it and throw it away
          • Facts about mold
            • Classified as viable (live) and non-viable (dead)
            • Both are health hazards if inhaled
            • Mold affects everyone differently
              • Mold growth in the lung is called – aspergilliosis, as aspergillus is the likely culprit
            • Mold can establish itself 24-48 hours following water intrusion
            • Most likely species will be penicillium (aggressive – first one “out of the gate”) and/or aspergillus
            • Presence of penicillium can introduce a musty odor to the environment – indicator
            • Concentration can change from room to room – odor just means a presence not necessarily at a toxic level because toxicity varies from person to person – floats in a “cloud”
            • TANGENT: Fact about cigarette smoke and “smoker’s cough”: Silia hairs in lungs are paralyzed by nicotine; when nicotine wears off, the silia then try to expel smoke by-products aka cough and when the person smokes again, the silia are paralyzed again and the cough goes away
        • Dust
          • When is dust an inhalation hazard?
          • 10 micron size particulate can get into your upper respiratory tract
          • 5 micron size particulate can get into your lower lung
          • What’s in dust?
            • Fire retardants from plastics in our house
            • Nuisance dust not otherwise specified
            • Asbestos fibers
              • Break along both axis making the fibers breathable
              • Asbestos is a natural occurring mineral and is inorganic
              • Our bodies cannot digest asbestos fibers.  When they deposit in your lung, your lung will try to digest the foreign body and it cannot digest it. Scar tissue will form over the fiber causing mesothelioma (cancer of the inner lining of your body only from asbestos – 30 year latency period)
              • Silica fibers do the same thing
            • Fiberglass
    • Should you be concerned with fiberglass exposure? Yes! No regulations for it, but you should be concerned, as it is extremely small shards of glass essentially.
    • Mouse droppings (hanta) – spray with Lysol to prevent particles from becoming airborne and spreading
    • Bird droppings (histoplasmosis)
    • Soot
      • Underwriters Lab – Average home has 1700 lbs of plastic in it
      • NIST Video of room containing legacy (all wood older furniture and natural fibers) versus modern (modern plastics, fabrics, etc.) – modern flashover time 3:40 / legacy flashover time: 30 minutes
      • You could be going into these environments for recovery
      • Modern room = more and more toxic during the fire and after
      • Fire soot contains: AIC Journal article– hydrochloric acid, metals, cyanide salts.
    • OSHA standards are MINIMUM STANDARDS and some have not been updated since 1968! When protecting yourself and others, do better than the OSHA standards
    • Paper masks cannot be used for asbestos (P100, N95)
    • Charlie Morecraft – Exxon – safety videos
  • Respirators
    • Protection Factor of 10 (although she says that the paper disposable ones shouldn’t have that good enough of a seal around the face to provide that amount of protection).
    • Half mask respirator is better than the disposable mask
  • Tyvek suits – plastic guard for asbestos
    • Now breatheable suits are available also made of Tyvek – KleenGuard Select made by Kimberly-Clark
  • Videos for safe removal of PPE e.g. gloves, suits so you don’t contaminate yourself/ skin/ clothes: one example: http://www.youtube.com/watch?v=iHBbWLYpCuU
  • Bootie covers to prevent contamination of shoes
  • Chemicals

    • Absorption
      • Solvent on Hands
        • Includes all solvents you use
        • Isopropyl alcohol to kill mold
        • Chronic use of solvents can often result in the defatting of the skin if proper gloves are not worn
        • Glove limitations
          • One type of glove is not sufficient for all of the different chemicals you may use in your practice
            • E.g. Nitrile gloves are not recommended for Methyl Ethyl Keytone
          • Check with the glove manufacturer for their Chemical Resistance
          • Glove Breakthrough Times – USE CHARTS made by glove manufacturer e.g. Ansell
          • For mixtures of solvents, get a glove that covers all solvents. If not available, use the one that has the highest concentration in the overall mixture
          • Latex – overall poor choice because they are very porous and latex allergy
      • Chemical in the eyes – anything that can splash
        • Amount in container doesn’t matter – if it can splash, it’s an eye hazard
    • Ingestion
      • Studies show that a person raise their hands to their face once every 20 minutes
      • Ingestion occurs from hand to mouth activity
      • Blood contamination
      • Sewage contamination
        • Standing water of unknown origin could be sewage contamination
        • Can be sampled for e-coli – litmus test for sewage – can do this dry – can be there weeks, months later
          • Test results are a week turnaround time – not a quick test
      • Hepatitis B can survive up to 7 days in blood
      • Hepatitis A can survive up to 7 days in sewage
      • Wash your hands A LOT
      • Handwashing: antibacterial soap NOT a good idea because it kills good and bad bacteria – use alcohol-based sanitizer if no handwashing stations available
      • What is proper handwashing? – 15-20 seconds! Sing Happy Birthday twice! Soap up and vigorous rubbing
      • Artificial nails harbor a LOT of bacteria (ewww)
      • CDC has a video on proper handwashing to the tune of Rolls Royce’s “Car Wash” (dance while washing your hands!)
    • Insect Bites
      • Mosquitoes
        • West Nile
        • Malaria
        • Encephalitis
      • Bed bugs
        • Look for in hotel under sheets and mattress pad/ cover– little ink spots from ballpoint pen – fecal matter from the bedbug (ick)
        • Kill with heat treatment!
          • In one instance in a building infestation, propane heaters were placed in the building and heated up to 160F degrees for four hours
          • They apparently have dogs that sniff out bed bugs and mold too!?! Apparently bed bugs give off an odor… eww…
    • Eye injuries
      • Ammonia burn
      • Chemical burn
      • Corneal laceration
        • Eye wash ASAP! FAST!!!
        • Run eye wash 1x / month for maintenance
      • Engineer your hazard out – splash injury – use dispensing bottle, smaller amounts so less risk for splashing
      • Wear goggles with contact lenses – contact lens can fuse to eye
      • New eye protection standards in latest AIC News
      • Common causes of chemical eye burn
        • Ammonia, bleach, and toilet bowl cleaner
        • Vinegar and glass polish
        • Dishwasher detergent, oven cleaner, drain cleaner
        • Contact lens cleaner
        • Car battery fluid
      • PPE for eye protection
        • Goggles
        • Safety glasses and face shield
    • Ergonomics
      • Proper lifting techniques
        • Elbows tucked into torso versus stretched arm
        • Bending at waist to pick up something versus bending legs
      • Reaching techniques
        • Keep load close to your body – no outstretching – same for typing, or reaching for the phone
      • OSHA Zones
        • Green zone
          • Arms tucked tight into your torso biceps doing the work
        • Yellow zone
          • Some extension but not full
        • Red zone
          • Full extension of arms
          • Full extension of torso
          • Back brace serves as reminder to use legs, but does not provide support
      • Seat position: two finger width distance between knee and edge of chair
      • Slide seat panel out for long legs
      • Back support for some chairs – adjustable
  • Minimum PPE for Emergency Response
    • Thin nitrile gloves
    • N95 filtering face piece
    • ½ mask respirator with cartridges
    • Steel toed shoes
    • Safety vest
    • Hard hat
  • How often should you replace PPE?
    • Respirators
      • ALWAYS if the respirator face piece shows any signs of deterioration, cracks, etc. or if the inhalation valves are cracked, warped, or missing
      • Check with the manufacturer for specific shelf-life years
      • Generally speaking they should be replaced every 5 years
    • Glasses
      • Immediately if there are excessive scratches or damage
      • 10 years otherwise
    • Goggles
      • Immediately if scratches/ damaged
      • Every 3 years
    • Gloves
      • Stored in a response bag
      • Replace with new gloves every year
  • During the workshop, they put this phosphorescent powder on our handouts to see how much we touched our faces! LOVE IT!!! I didn’t touch my face because I was so busy typing for this blog…
  • Portable UV light was used to detect powder – UV 5X shortest wavelength (340 nm I think was the shortest wavelength for the light)

  • Lab Safety
    • She listed the standard “dos and don’ts” that we all know we should do… but often don’t do. Listing the standard dress code, don’t wear open toed shoes, tie your hair back cited the Yale example of the girl who died in the chemistry lab this past year.
    • General safety rules: no food and drink – cross contamination. Know the equipment you’re using, know where all safety gear is, bucket of safety glasses by the door for visitors
    • Health hazards in the lab: organic solvents, chemistry professor died from mercury poisoning after a small drop of dimethylmercury got on her glove.  Post doc wearing wrong glove when working with concentrated sulphuric acid – 2nd degree burns
  • Tips, tricks
    • Electricity
      • Electricity and water don’t mix
      • Is the power off when they told you?
      • Is the power on when they told you?
      • GFCI device
      • Circuit alert non-contact voltage tester – non-contact (device to detect conductivity). Also one for testing the lights in your Christmas lights
    • Wear the right footwear – electrical insulating, steel toe, high enough to keep socks dry
    • Use HEPA filter vacuums ONLY
    • Herd mentality
      • In response stay with the herd, use the buddy system, have a meeting point in case you get separated
    • When people won’t wear PPE:
      • Fire fighters – “like teaching safety in a frat house” (I thought that was HILARIOUS BTW) – SCBA (Self-Contained Breathing Apparatus) needs to stay on because they enter “chemical soups” that our half face masks couldn’t handle
      • Legal issues with handing out masks to laypersons e.g. firefighters handing out masks to homeowners after a fire
      • Think of it this way in terms of people refusing to wear PPE: give people the knowledge and then if they choose not to wear PPE, then they know the risk
      • Responding to after fire, formaldehyde is the biggest danger as a carcinogen. Use CBRN canister (Chemical, Biology,  Radiological and Nuclear) that protects against formaldehyde
  • If you find any errors, spelling errors, etc. please let me know and I will be happy to change them! Thanks so much.