The compelling object at the center of this paper is an experimental prototype of a Nazi German jet powered fighter aircraft discovered by the Allies at the end of World War II and brought to the United States for study. Designed by the Horten Brothers (Reimar and Walter), this craft with a steel structure, paper-thin plywood veneers, and no vertical tail is regarded as a design predecessor to the stealth bomber. The aircraft, a model Horten Ho 229 v3 (the third and final version of this particular airframe) was captured when it was near completion in the Gotha workshop http://airandspace.si.edu/collections/artifact.cfm?object=nasm_A19600324000 Charcoal was said to have been added to the construction adhesives to make the aircraft invisible to radar.
While always a favorite of air flight/military history buffs, this craft has never been exhibited and has been the subject of increased interest in recent years due to what the paper’s author describes as a “sensationalized” documentary entitiled “Hitler’s Stealth Fighter.” This video, available on YouTube, is replete with inaccuracies including the assertion that it is stored in a “secret government warehouse” when, in fact, its current home is the Smithsonian’s Paul E Garber Facility in Suitland, Maryland. However, it will soon be moved to another disclosed location – The Udvar-Hazy Center in Chantilly, Virginia where it will have its big reveal.
In preparation for this move, conservators at the Smithsonian NASM carried out a technical study to inform treatment protocol for the stabilization of the unstable and extensively delaminating veneers. They sought to characterize and identify the adhesives and other materials employed and, in particular, seek evidence for the presence (or apparent lack) of charcoal.
The aircraft is 55.4 feet wide with a tubular steel frame. The engine rests in the center of the craft and it is covered in a plywood skin. There is a clear canopy for the pilot. Due to complications of working on the object in its storage location, the decision was made to disassemble the damaged plywood portions to allow for treatment of the panels in the conservation lab. The composite materials that were examined and analyzed included the plywood board, structural supports and spacer blocks including the adhesives used to attach these portions to one another.
After a literature review of plywood available in Germany before WWII, reference materials were acquired for the potential materials. A sampling protocol was developed and the object and reference samples were examined under visual and Polarized Light Microscopy, FTIR, Raman, and for selected samples XRD was employed. (There may have been other methods employed that I missed in my notes– GC-MS and 3-D microscopy were mentioned in the abstract – sorry if I have omitted something significant.) The analysis was done in conjunction with the Museum Conservation Institute.
The analyses yielded some unexpected results as some of the wood sample results varied from those specified by the Horten Brothers (as reported in their interrogation). However the substitutions of European Beechwood/Scots Pine for the specified birch was not very surprising to the authors given the materials shortages at the end of WWII. The adhesives tested were identified as urea formaldehyde and phenol formaldehyde. Confirming the presence of charcoal in the black paint/adhesive layers proved elusive. The black particles were difficult to separate from the matrix. PLM examination did not support the charcoal identification and they were found to be amorphous with XRD. FTIR analysis pointed to the presence of cellulose, hemi cellulose and phenolics. This could mean oxidized or charred wood – or neither.
Plans for treatment do not include repainting damaged areas as the author mentioned a growing trend toward exhibition of aircraft in a less heavily restored state. Beech veneers will be employed in areas of loss but were unavailable in the United States in the <1mm thickness required so must be ordered from Germany. Because the urea formaldehyde has cross-linked with age and become insoluble, the conservators are not as concerned as they might have been about adding new materials when they choose an adhesive to stabilize the veneers.
Details and updates on this research project and the treatment are available on the on the National Air and Space Museum’s Airspace blog http://blog.nasm.si.edu/restoration/horten-h-ix-v3-bat-wing-ship-may-2014-update/ The Bat Wing Ship is poised to be a popular attraction when it goes on exhibit – I know my interest has been piqued by this interesting talk!