Remy Dreyfuss-Deseigne described research related to mending methods for transparent materials using nanocellulose films. His research has been carried out with several institutional partners, at the National Library of France (BnF, Paris, France), Research Center for Conservation (CRC, Paris, France), French Museum of Cinema, and during his 2015-2016 NEA fellowship in paper conservation at the Conservation Center for Art & Historic Artifacts (CCAHA, Philadelphia, PA).
Remy opened with some images of difficult structural problems: torn gelatin windows, animation cells, and architectural drawings on tracing paper. He then introduced nanocellulose, explaining how it is made, what its properties are, and its potential for use in conservation.
His work focuses on one kind of nanocellulose, microfibrillated cellulose (abbreviated MFC). Nanocellulose materials are produced for a variety of uses in electronics and biotech, and are being researched and manufactured by several universities including in Grenoble, France and at the University of Maine.
Nanocellulose is produced by mechanically shearing wood to rip apart the fibers until they are nano in scale. Cotton, spruce and birch can all be used as sources for nanocellulose. The amorphous parts of the remaining cellulose structure are treated with acid in order to dissolve them, leaving highly crystalline fibrils. There is a lot of ongoing research into the production of nanocellulose in the nanotechnology, renewable materials, and sustainable engineering fields.
For conservation applications, Remy compared the properties of nanocellulose films to lightweight Japanese papers like gampi and kozo used to mend tears on translucent artworks. Nanocellulose is supplied as a gel that can be cast out by pouring into a petri dish and evaporating out the water, creating films that vary proportionally in thickness related to concentration. Remy’s research investigates its properties in combination with different adhesives, and its response to artificial aging tests (light, temperature and humidity) as well as mechanical strength tests.
He found that the nanocellulose films were thinner than papers but quite strong (nearly as strong as Gampi), and mostly behaved like cellulose, a good thing for their use as a paper conservation material. Most importantly, mends made with the thin films are practically invisible in regular and transmitted light. These mends were demonstrated on translucent slides with tears from the collection of the French Museum of Cinema (impressive work!). Ongoing testing will include further analysis of the material, e.g. pH and mechanical strength measurements and fungal resistance tests.
While this was the first time I had heard about nanocellulose it has many potential uses, and not just for mending translucent materials. As a biomaterial derived from renewable forestry resources, nanocellulose has gotten a lot of attention over the past five years for its potential in industrial applications. Given its high ratio of strength to weight it has great potential for use in fill materials of all types, and has already found applications in industrial 3D printing as a substitute for carbon fibers in composites. Since it is compatible with many adhesives, it may find wide-ranging applications in conservation. I am looking forward to hearing more about Remy’s ongoing research and thank him for the excellent introduction to an interesting material. You can learn more about Remy’s work at his website.
Thank you very much Jessica for your nice and accurate post 🙂 I’m glad you liked the presentation.
All my best,
Remy Dreyfuss-Deseigne