The ability of conservators to accurately describe surfaces is integral to effective documentation and communication in the conservation field. While changes in color can be accurately described by the Munsell and CIELAB systems, changes in the appearance of a surface texture are often described by vague and indefinite terms. The work described by Dr. Whitmore arose from the desire for a new vocabulary for describing the surface texture and appearance of regularly-patterned surfaces such as canvas. His talk presented a background of how we perceive surface texture and some mathematical analyses that can be performed to yield qualitative metrics for describing certain textures.
Texture is not only an artifact of the topography of a surface, but also a result of the illumination of this topography; the appearance of a surface depends on the position and directionality of the light source as well as the distance of the light from the surface. As viewers, we perceive texture from the resulting distribution and contrast of light and dark areas.
The limitations of our perception can be mapped by a contrast sensitivity function, which relates our ability to perceive patterns of varying degrees of contrast with the size of the pattern and the distance at which it is viewed. Changes to texture are often accompanied by changes in contrast; a weathered surface, for example, exhibits decreased contrast between its light and dark areas. In periodic patterns, the contrast can be quantitatively measured by a gray-level correlation matrix analysis. Once this contrast value has been determined, the contrast sensitivity function can be used to calculate the maximum viewing distance at which a pattern of the given contrast can be perceived. This “maximum visibility distance” may serve as a useful metric with which to describe periodic surface textures.
The analysis has been successfully applied to canvases that had been subjected to extreme treatment, and further work will examine the degree of textural changes caused by common conservation treatments. Future work may also investigate other mathematical and image processing analyses for application to different surface textures.